Organizational Decision-Making Structures in the Age of Artificial Intelligence

by Yash Shrestha, Shiko Ben-Menahem, Georg Krogh


  PDF
 

Abstract

How does organizational decision-making change with the advent of artificial intelligence (AI)-based decision-making algorithms? This article identifies the idiosyncrasies of human and AI-based decision making along five key contingency factors: specificity of the decision search space, interpretability of the decision-making process and outcome, size of the alternative set, decision-making speed, and replicability. Based on a comparison of human and AI-based decision making along these dimensions, the article builds a novel framework outlining how both modes of decision making may be combined to optimally benefit the quality of organizational decision making. The framework presents three structural categories in which decisions of organizational members can be combined with AI-based decisions: full human to AI delegation; hybrid—human-to-AI and AI-to-human—sequential decision making; and aggregated human–AI decision making.

California Management Review

Berkeley-Haas's Premier Management Journal

Published at Berkeley Haas for more than sixty years, California Management Review seeks to share knowledge that challenges convention and shows a better way of doing business.

Learn more
Follow Us